Вариант № 62946

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 3:30:00
1
Задание № 9
i

В рам­ках акции «Книги  — детям» школа по­лу­чи­ла не­ко­то­рое ко­ли­че­ство книг, рас­пре­де­ле­ние ко­то­рых по руб­ри­кам по­ка­за­но на диа­грам­ме: «І»  — учеб­ни­ки и учеб­ные по­со­бия, «ІІ»  — ме­то­ди­че­ские по­со­бия, «ІІІ»  — на­уч­но-по­пу­ляр­ная ли­те­ра­ту­ра, «ІV»  — ху­до­же­ствен­ная ли­те­ра­ту­ра (см. рис.). Какое ко­ли­че­ство учеб­ни­ков и учеб­ных по­со­бий по­сту­пи­ло в школу, если книг на­уч­но-по­пу­ляр­ной те­ма­ти­ки и ме­то­ди­че­ских по­со­бий было 396?



2
Задание № 604
i

Най­ди­те зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка целая часть: 6, дроб­ная часть: чис­ли­тель: 5, зна­ме­на­тель: 6 минус целая часть: 6, дроб­ная часть: чис­ли­тель: 13, зна­ме­на­тель: 18 пра­вая круг­лая скоб­ка умно­жить на 4,5 минус 0,7.



3
Задание № 1089
i

Вы­ра­зи­те 528 см 6 мм в мет­рах с точ­но­стью до сотых.



4
Задание № 373
i

Па­рал­лель­но сто­ро­не тре­уголь­ни­ка, рав­ной 10, про­ве­де­на пря­мая. Длина от­рез­ка этой пря­мой, за­клю­чен­но­го между сто­ро­на­ми тре­уголь­ни­ка, равна 6. Най­ди­те от­но­ше­ние пло­ща­ди по­лу­чен­ной тра­пе­ции к пло­ща­ди ис­ход­но­го тре­уголь­ни­ка.



5
Задание № 670
i

Из точки A к окруж­но­сти про­ве­де­ны ка­са­тель­ные AB и AC и се­ку­щая AM, про­хо­дя­щая через центр окруж­но­сти O. Точки B, С, M лежат на окруж­но­сти (см. рис.). Из­вест­но, что BK  =  7, AC  =  10. Най­ди­те длину от­рез­ка AK.



6
Задание № 672
i

Све­жие фрук­ты при сушке те­ря­ют a % своей массы. Ука­жи­те вы­ра­же­ние, опре­де­ля­ю­щее массу сухих фрук­тов (в ки­ло­грам­мах), по­лу­чен­ных из 50 кг све­жих.



7
Задание № 736
i

Рас­по­ло­жи­те числа 16 в сте­пе­ни левая круг­лая скоб­ка 10 пра­вая круг­лая скоб­ка , 29 в сте­пе­ни левая круг­лая скоб­ка 8 пра­вая круг­лая скоб­ка , 9 в сте­пе­ни левая круг­лая скоб­ка 12 пра­вая круг­лая скоб­ка в по­ряд­ке воз­рас­та­ния.



8
Задание № 1799
i

Ре­зуль­тат упро­ще­ния вы­ра­же­ния |a минус 7| минус |a| при  дробь: чис­ли­тель: 1, зна­ме­на­тель: 7 конец дроби мень­ше a мень­ше дробь: чис­ли­тель: 4, зна­ме­на­тель: 9 конец дроби имеет вид:



9
Задание № 1882
i

Най­ди­те зна­че­ние вы­ра­же­ния 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби \ctg дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби .



10
Задание № 1949
i

Ре­зуль­тат упро­ще­ния вы­ра­же­ния  синус левая круг­лая скоб­ка 11 Пи минус альфа пра­вая круг­лая скоб­ка равен:



11
Задание № 560
i

Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: x минус 1 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка конец ар­гу­мен­та =0. В ответ за­пи­ши­те сумму его кор­ней (ко­рень, если он один).


Ответ:

12
Задание № 739
i

Най­ди­те сумму целых ре­ше­ний (ре­ше­ние, если оно един­ствен­ное) си­сте­мы не­ра­венств  си­сте­ма вы­ра­же­ний 3x плюс 4 боль­ше или равно x в квад­ра­те , левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка в квад­ра­те боль­ше 0. конец си­сте­мы .


Ответ:

13
Задание № 1202
i

Вы­бе­ри­те все вер­ные утвер­жде­ния, яв­ля­ю­щи­е­ся свой­ства­ми не­чет­ной функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , опре­делённой на x при­над­ле­жит левая круг­лая скоб­ка минус бес­ко­неч­ность ; бес­ко­неч­ность пра­вая круг­лая скоб­ка и за­дан­ной фор­му­лой f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =x в квад­ра­те плюс 8x при x\leqslant0.

1.  Функ­ция имеет три нуля.

2.  Функ­ция убы­ва­ет на про­ме­жут­ке [5; 7].

3.  Мак­си­мум функ­ции равен 16.

4.  Ми­ни­маль­ное зна­че­ние функ­ции равно −16.

5.  f левая круг­лая скоб­ка f левая круг­лая скоб­ка 1 пра­вая круг­лая скоб­ка плюс 1 пра­вая круг­лая скоб­ка =0.

6.  Функ­ция при­ни­ма­ет от­ри­ца­тель­ные зна­че­ния при x при­над­ле­жит левая квад­рат­ная скоб­ка 8; 10 пра­вая квад­рат­ная скоб­ка .

7.  Гра­фик функ­ции сим­мет­ри­чен от­но­си­тель­но оси абс­цисс.

 

Ответ за­пи­ши­те в виде по­сле­до­ва­тель­но­сти цифр в по­ряд­ке воз­рас­та­ния. На­при­мер: 123.


Ответ:

14
Задание № 442
i

Най­ди­те пе­ри­метр пра­виль­но­го ше­сти­уголь­ни­ка, мень­шая диа­го­наль ко­то­ро­го равна 4 ко­рень из 3 .


Ответ:

15
Задание № 445
i

Ре­ши­те урав­не­ние x в квад­ра­те минус 5x плюс 4= дробь: чис­ли­тель: 16, зна­ме­на­тель: x в квад­ра­те минус 9x плюс 18 конец дроби и най­ди­те сумму его кор­ней.


Ответ:

16
Задание № 1604
i

Дана ариф­ме­ти­че­ская про­грес­сия (аn), у ко­то­рой а9 −  а5  =  12, a10  =  14. Для на­ча­ла каж­до­го из пред­ло­же­ний А−В под­бе­ри­те его окон­ча­ние 1−6 так, чтобы по­лу­чи­лось вер­ное утвер­жде­ние.

 

На­ча­ло пред­ло­же­ния Окон­ча­ние пред­ло­же­ния

А)  Раз­ность этой про­грес­сии равна ...

Б)  Пер­вый член этой про­грес­сии равен ...

В)  Сумма пер­вых вось­ми чле­нов этой про­грес­сии равна ...

1)   2

2)  −13

3)  4

4)  −20

5)  3

 

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер: А1Б1В4.


Ответ:

17
Задание № 956
i

Най­ди­те сумму наи­мень­ше­го и наи­боль­ше­го целых ре­ше­ний не­ра­вен­ства  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 11 конец дроби пра­вая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 ло­га­рифм по ос­но­ва­нию 8 левая круг­лая скоб­ка x плюс 11 пра­вая круг­лая скоб­ка боль­ше 0.


Ответ:

18
Задание № 1957
i

На ко­ор­ди­нат­ной плос­ко­сти даны точки A(−5; 1) и D(−5; −4). Точка С сим­мет­рич­на точке А от­но­си­тель­но оси ор­ди­нат, а точка В сим­мет­рич­на точке D от­но­си­тель­но на­ча­ла ко­ор­ди­нат. Для на­ча­ла каж­до­го из пред­ло­же­ний А−В под­бе­ри­те его окон­ча­ние 1−6 так, чтобы по­лу­чи­лось вер­ное утвер­жде­ние.

 

НА­ЧА­ЛО ПРЕД­ЛО­ЖЕ­НИЯ

A)  Длина боль­шей диа­го­на­ли че­ты­рех­уголь­ни­ка ABCD равна ...

Б)  Длина наи­боль­шей сто­ро­ны че­ты­рех­уголь­ни­ка ABCD равна ...

B)  Пло­щадь че­ты­рех­уголь­ни­ка ABCD равна ...

ОКОН­ЧА­НИЕ ПРЕД­ЛО­ЖЕ­НИЯ

1)  30

2)  50

3)  5 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та

4)  40

5)   ко­рень из: на­ча­ло ар­гу­мен­та: 41 конец ар­гу­мен­та

6)  2 ко­рень из: на­ча­ло ар­гу­мен­та: 41 конец ар­гу­мен­та

 

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер: А1Б1В4.


Ответ:

19
Задание № 1012
i

Пусть (x; y)  — ре­ше­ние си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний 4x минус y=5,4x в квад­ра­те минус xy плюс x=18. конец си­сте­мы .

Най­ди­те зна­че­ние 4yx.


Ответ:

20
Задание № 237
i

Най­ди­те ко­ли­че­ство кор­ней урав­не­ния  синус x= дробь: чис­ли­тель: минус x, зна­ме­на­тель: 16 Пи конец дроби .


Ответ:

21
Задание № 298
i

В рав­но­бо­кой тра­пе­ции боль­шее ос­но­ва­ние вдвое боль­ше каж­дой из осталь­ных сто­рон и лежит в плос­ко­сти α. Бо­ко­вая сто­ро­на об­ра­зу­ет с плос­ко­стью α угол, синус ко­то­ро­го равен  дробь: чис­ли­тель: 5 ко­рень из 3 , зна­ме­на­тель: 21 конец дроби . Най­ди­те 21sinβ, где β — угол между диа­го­на­лью тра­пе­ции и плос­ко­стью α.


Ответ:

22
Задание № 1354
i

В ос­но­ва­нии пи­ра­ми­ды лежит пря­мо­уголь­ный тре­уголь­ник, длина ги­по­те­ну­зы ко­то­ро­го равна 6, ост­рый угол равен 60°. Каж­дая бо­ко­вая грань пи­ра­ми­ды на­кло­не­на к плос­ко­сти ос­но­ва­ния под углом, рав­ным arccos дробь: чис­ли­тель: 3 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 14 конец дроби . Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пи­ра­ми­ды.


Ответ:

23
Задание № 447
i

Най­ди­те сумму целых зна­че­ний x, при­над­ле­жа­щих об­ла­сти опре­де­ле­ния функ­ции

y= ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 15 плюс 2x минус x в квад­ра­те пра­вая круг­лая скоб­ка .


Ответ:

24
Задание № 1608
i

Най­ди­те про­из­ве­де­ние наи­мень­ше­го корня (в гра­ду­сах) на ко­ли­че­ство раз­лич­ных кор­ней урав­не­ния  синус 5x= ко­си­нус 65 гра­ду­сов на про­ме­жут­ке (−90°; 90°).


Ответ:

25
Задание № 1786
i

АС  — общая ги­по­те­ну­за пря­мо­уголь­ных тре­уголь­ни­ков ABC и ADC. Плос­ко­сти этих тре­уголь­ни­ков вза­им­но пер­пен­ди­ку­ляр­ны. Най­ди­те квад­рат длины от­рез­ка BD, если AB=9 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , BC=9 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та , AD  =  DC.


Ответ:

26
Задание № 1896
i

Пусть A= ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: ко­рень из: на­ча­ло ар­гу­мен­та: 22 минус 4 ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 20 конец ар­гу­мен­та минус ко­рень 6 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 8 конец ар­гу­мен­та конец ар­гу­мен­та . Най­ди­те зна­че­ние вы­ра­же­ния A12.


Ответ:

27
Задание № 2151
i

Верх­нюю сто­ро­ну листа фа­не­ры пря­мо­уголь­ной формы раз­де­ли­ли для по­крас­ки пря­мой ли­ни­ей на две части так, как по­ка­за­но на ри­сун­ке. Тре­уголь­ную часть (I) по­кра­си­ли крас­кой бе­ло­го цвета, а че­ты­рех­уголь­ную (II)  — крас­кой се­ро­го цвета. Сколь­ко серой крас­ки (в грам­мах) было ис­поль­зо­ва­но, если крас­ки бе­ло­го цвета по­на­до­би­лось 270 г и рас­ход крас­ки (г/см2) обоих цве­тов оди­на­ков?


Ответ:

28

Най­ди­те сумму квад­ра­тов кор­ней (квад­рат корня, если он един­ствен­ный) урав­не­ния

 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те минус x плюс 12 пра­вая круг­лая скоб­ка умно­жить на ло­га­рифм по ос­но­ва­нию 7 левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию 7 левая круг­лая скоб­ка 9x минус 9 пра­вая круг­лая скоб­ка .


Ответ:

29

На сто­ро­не AB па­рал­ле­ло­грам­ма ABCD от­ме­че­на точка O так, что AB=3AO. К плос­ко­сти ABCD из точки O вос­ста­нов­лен пер­пен­ди­ку­ляр SO дли­ной 8. Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 89 конец ар­гу­мен­та ко­си­нус альфа , где  альфа   — ли­ней­ный угол дву­гран­но­го угла BSCD, если CD = 9,BC = 5 и из­вест­но, что пло­щадь ABCD равна 45.


Ответ:

30
Задание № 2132
i

Две сне­го­очи­сти­тель­ные ма­ши­ны, ра­бо­тая од­но­вре­мен­но, очи­сти­ли всю улицу за 24 мин. Если бы по­ло­ви­ну улицы очи­сти­ла пер­вая ма­ши­на, а затем остав­шу­ю­ся часть улицы  — вто­рая ма­ши­на, то вся улица была бы очи­ще­на за 50 мин. За какое время (в ми­ну­тах) вто­рая ма­ши­на, ра­бо­тая одна, очи­сти­ла бы всю улицу, если из­вест­но, что она ра­бо­та­ет мед­лен­нее, чем пер­вая ма­ши­на?


Ответ:
Завершить работу, свериться с ответами, увидеть решения.